Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 194(Pt B): 115356, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37633025

RESUMO

Puget Sound (Washington, USA) is a large estuary, known for its profitable shellfish aquaculture industry. However, in the past decade, scientists have observed strong acidification, hypoxia, and temperature anomalies in Puget Sound. These co-occurring environmental stressors are a threat to marine ecosystems and shellfish aquaculture. Our research assesses how environmental variability in Puget Sound impacts two ecologically and economically important bivalves, the purple-hinge rock scallop (Crassodoma gigantea) and Mediterranean mussel (Mytilus galloprovincialis). Our study examines the effect of depth and seasonality on the physiology of these two important bivalves to gain insight into ideal grow-out conditions in an aquaculture setting, improving the yield and quality of this sustainable protein source. To do this, we used Hood Canal (located in Puget Sound) as a natural multiple-stressor laboratory, which allowed us to study acclimatization capacity of shellfish in their natural habitat and provide the aquaculture industry information about differences in growth rate, shell strength, and nutritional sources across depths and seasons. Bivalves were outplanted at two depths (5 and 30 m) and collected after 3.5 and 7.5 months. To maximize mussel and scallop growth potential in an aquaculture setting, our results suggest outplanting at 5 m depth, with more favorable oxygen and pH levels. Mussel shell integrity can be improved by placing out at 5 m, regardless of season, however, there were no notable differences in shell strength between depths in scallops. For both species, δ13C values were lowest at 5 m in the winter and δ15N was highest at 30 m regardless of season. Puget Sound's combination of naturally and anthropogenically acidified conditions is already proving to be a challenge for shellfish farmers. Our study provides crucial information to farmers to optimize aquaculture grow-out as we begin to navigate the impacts of climate change.


Assuntos
Mytilus , Pectinidae , Animais , Ecossistema , Frutos do Mar , Aquicultura
2.
Artigo em Inglês | MEDLINE | ID: mdl-31536813

RESUMO

Ocean acidification and increased ocean temperature from elevated atmospheric carbon dioxide can significantly influence the physiology, growth and survival of marine organisms. Despite increasing research efforts, there are still many gaps in our knowledge of how these stressors interact to affect economically and ecologically important species. This project is the first to explore the physiological effects of high pCO2 and temperature on the acclimation potential of the purple-hinge rock scallop (Crassadoma gigantea), a widely distributed marine bivalve, important reef builder, and potential aquaculture product. Scallops were exposed to two pCO2 (365 and 1050 µatm) and temperature (14 and 21.5 °C) conditions in a two-factor experimental design. Simultaneous exposure to high temperature and high pCO2 reduced shell strength, decreased outer shell density and increased total lipid content. Despite identical diets, scallops exposed to high pCO2 had higher content of saturated fatty acids, and lower content of polyunsaturated fatty acids suggesting reorganization of fatty acid chains to sustain basic metabolic functions under high pCO2. Metagenomic sequencing of prokaryotes in scallop tissue revealed treatment differences in community composition between treatments and in the presence of genes associated with microbial cell regulation, signaling, and pigmentation. Results from this research highlight the complexity of physiological responses for calcifying species under global change related stress and provide the first insights for understanding the response of a bivalve's microbiome under multiple stressors.


Assuntos
Ácidos/química , Osso e Ossos/metabolismo , Dióxido de Carbono/análise , Microbiota , Pectinidae/fisiologia , Água do Mar/microbiologia , Temperatura , Aclimatação , Exoesqueleto , Animais , Aquecimento Global , Homeostase , Concentração de Íons de Hidrogênio , Pectinidae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...